Statement of Research
Noah Stephens-Davidowitz*

1 Summary

My research primarily uses the tools of theoretical computer science to answer fundamental ques-
tions about the security of widely deployed real-world cryptography.

Much of my work focuses on the foundations of post-quantum cryptography, that is, classi-
cal cryptographic schemes that are secure even against an adversary with a quantum computer.
This particular line of research has some added urgency at the moment because such schemes are
currently in the process of being standardized [NIS, Wikal, with the goal of replacing much of our
current (quantum-insecure) infrastructure in the near future [Bral6, NIS16, Moo18]. My co-authors
and I study the fundamental computational problems underlying the security of these schemes by
developing faster algorithms [DRS14, ADRS15, ADS15, AS18b, Stel9, ALNS19, MS19b, ALS19];
proving strong fine-grained hardness results [BGS17, AS18a, ABGS19, BSV19, SV19]; and studying
the complexity of these problems more generally [Stel5, Stel6a, Stel6b, BDS16, PRS17].

I am also interested more broadly in theory, cryptography, and geometry. My co-authors
and I have studied randomness extraction and (pseudo)random number generation [DSSW14,
AGO™19, DGS19]; “post-Snowden” cryptography [MS15, DMS16] and other cryptographic con-
structions [HHSS17, APS18]; high-dimensional geometry [RS17a, RS17b, Stel7, MS19a, AS19];
and combinatorics [SC07, HCS07].

2 Selected Results

2.1 Lattices, codes, and post-quantum cryptography

Most of the post-quantum cryptographic constructions under consideration for standardization and
widespread deployment use lattice-based cryptography, i.e., cryptography whose security relies on
the presumed hardness of certain computational problems over n-dimensional geometric objects
called lattices. Most of the remaining candidates are based on natural problems over linear codes.

The security of the proposed schemes relies crucially on the assumption that our current best
algorithms (both classical and quantum) for these lattice and coding problems cannot be improved
by even a relatively small amount.! However, these problems are not as well understood as the
analogous problems behind the (quantum-insecure) cryptography that currently secures more than
half of all internet traffic—factoring and the discrete logarithm. Indeed, my colleagues and I are
still learning about these problems and discovering new algorithms for them [ADRS15, ADS15,
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AS18b, ALNS19, ALS19, MS19b], which might make one worry that further progress will break
the proposed schemes after they are deployed.?

It is therefore imperative that we study these computational problems thoroughly before post-
quantum cryptography is deployed at scale. Below, I list some of the many ways that my co-authors
and I have attacked these problems.

SVP and CVP algorithms. Together with Aggarwal, Dadush, and Regev, we showed a new
algorithm for the most important computational lattice problem, the Shortest Vector Problem
(SVP) [ADRS15]. Our algorithm runs in 2"+°(") time, which improved upon the previous best
proven running time of 47+o(%) [MV13].? The speed of such algorithms determines the security
of lattice-based cryptography, as our current best attacks work via a reduction to SVP. With
Aggarwal and Dadush, we later extended this result to an algorithm with the same running time
for the Closest Vector Problem (CVP) [ADS15], which is the second-most important computational
lattice problem and is known to be at least as hard as SVP.

Recently, we found a much simpler 2"T°(")_time algorithm for SVP [AS18b], and we hope that
this simpler algorithm will be easier to improve. Indeed, using ideas from [AS18b], we discovered
a faster algorithm for a closely related problem [ALS19].

Lower bounds for SVP, CVP, and codes. Together with Bennett and Golovnev, we showed
strong evidence that the algorithm for CVP mentioned above is essentially the fastest possi-
ble [BGS17] by proving quantitative lower bounds for CVP under certain well known complexity-
theoretic conjectures.* With Aggarwal, we extended this to similar quantitative lower bounds for
SVP [AS18a], proving that our current algorithms for SVP cannot be improved too much.” Such
fine-grained hardness results give far stronger guarantees than, e.g., results that only rule out
polynomial-time algorithms, and they therefore rule out certain attacks on lattice-based cryptog-
raphy in practice. Both of these works answered long-standing open questions.

In recent work with Vaikuntanathan, we prove optimal lower bounds for the two most funda-
mental coding problems [SV19]. Again, this rules out some attacks on code-based post-quantum
cryptographic schemes. Finally, in [ABGS19] we prove hardness of key variants of CVP.

The reverse Minkowski conjecture. With Regev, we proved Dadush’s beautiful “reverse
Minkowski” conjecture [RS17b]. The conjecture is closely related to Minkowski’s celebrated theo-
rem, which states that a dense lattice must have many short vectors. This is a foundational result
in the study of lattices, and it has innumerable applications in fields as diverse as number theory,
complexity theory, coding theory, and cryptography.

2Factoring and the discrete logarithm offer a cautionary tale, as there been multiple algorithmic breakthroughs
for these problems since the first public-key encryption schemes were deployed. E.g., the original parameters chosen
for the RSA encryption scheme are now known to be insecure. This was not a major issue at the time, but now we
rely on secure communication far more and face far more determined and sophisticated adversaries.

3There are other algorithms that seem to perform better in practice but come with no proof of correctness [NV08,
BDGL16].

4Setting aside some very important technical caveats, we showed that the fastest algorithm for CVP runs in time
27+°(") ynder the Strong Exponential Time Hypothesis.

5Unlike for CVP, our lower bounds for SVP do not rule out any improvement. We actually expect to find faster
algorithms for SVP, as I discuss a bit in Section 3.



Dadush conjectured a converse to this important theorem: that any (non-degenerate) lattice
with many short vectors must be dense. Before it was proven, Dadush and Regev showed many
implications of the conjecture in complexity theory, cryptography, integer programming, and Brow-
nian motion [DR16], and even showed that it implies an earlier conjecture due to Kannan and
Lovész [KL88]. Even more applications have appeared since, including work with my co-authors
on new cryptographic proof systems [APS18], lattice algorithms [Stel9, ALS19], and hardness re-
sults [BSV19], as well as work by others in additive combinatorics [LR17], and convex geometry
and complexity theory [Dadl9]. The techniques in [RS17b] also yielded a new promising line of
attack on a centuries-old question in algebraic number theory, as I discuss in Section 3.

This work has attracted attention from the larger community. [RS17b] was the subject of
a Bourbaki Seminar [Wikb] given by Bost [Bos18]. And, Wigderson used our proof of a purely
mathematical conjecture that arose from computer science as an example of the fruitful interplay
between computer science and pure mathematics [Wigl8].

Worst-case to average-case reductions. With Peikert and Regev, we showed worst-case to
average-case reductions for a large class of lattice-based cryptographic schemes [PRS17]. Such
reductions are one of the main selling points of lattice-based cryptography [Ajt04, MRO7, Reg09]
because they prove that cryptography is secure assuming the hardness of problems that are better
understood theoretically, such as SVP.

Before our work, however, such reductions were only known for a small fraction of lattice-
based cryptographic constructions. In [PRS17], we extend to essentially all plausible schemes® the
strong hardness guarantees that we previously only knew in certain special cases. (Our results also
subsume nearly all prior work.) In particular, we give the first such hardness guarantee for many
of the cryptographic constructions based on ideal lattices, resolving a question posed in [LPR13].
These constructions are strongly preferred in practice because of their efficiency. (See Section 3.)

Additional work in lattices. My co-authors and I have also studied the geometry of lat-
tices [RS17a, Stel7, MS19a, AS19]; developed additional lattice algorithms [DRS14, BDS16, Stel9,
MS19b, ALNS19]; studied the complexity of other computational lattice problems [Stel5, Stel6a,
Stel6b, BDS16]; and constructed lattice-based cryptographic schemes [HHSS17, APS18|.

2.2 Other topics

Real-world RNGs.  With Dodis, Shamir, and Wichs [DSSW14] and Dodis and Guo [DGS19],
we study the online (pseudo)Random Number Generators (RNGs) that are widely used in practice.
These RNGs are designed to slowly accumulate entropy from a sequence of random sources with
unknown quality, such as thermal noise measurements or keystroke timings. This is in contrast to
the pseudorandom generators typically studied by theoretical cryptographers, which require a truly
random seed to start (or the “one-shot” extractors described below, which take a single input).

In [DSSW14], we provide the first formal security model for Ferguson and Schneier’s celebrated
Fortuna construction [FS03]. In [DGS19], we study the high-speed online RNGs used by operating
systems. Such an RNG is run very frequently (e.g., on every keystroke) and therefore may only
perform a few simple bit operations each time that it is run. In both cases, we provide the first

Specifically, it works for all schemes based on versions of Regev’s Learning with Errors problem [Reg09] (including
Ring-LWE, Module-LWE, etc.).



theoretical justification (in quite strong models, using very diferent techniques) for RNGs that are
widely used in practice. We also uncover surprising connections to number theory and harmonic
analysis, and use these tools to improve on the current constructions.

Fine-grained hardness of average-case k-SUM. With Brakerski and Vaikuntanathan, we
show strong lower bounds on algorithms for the average-case k-SUM problem (assuming a widely
believed conjecture) [BSV19]. The worst-case fine-grained hardness of A-SUM has been extensively
studied [Will8] since the celebrated work of Gajentaan and Overmars [GO95, GO12] showed its
close connection with many important problems in computational geometry.

Our work is the first to show fine-grained hardness for the average-case version of this problem
(or for any natural problem). This has important applications in cryptography, such as in proof-of-
work schemes [BRSV17, BRSV18]. In fact, our result yields the first fine-grained one-way function
(and even a fine-grained collision-resistant hash function!), resolving open problems in [BRSV17].

Somewhere extractors. With Aggarwal, Guo, Obremski, and Ribeiro, we prove separations
between somewhere extractors and strong extractors [AGO119]. Extractors are deterministic func-
tions that use a short random seed to convert any (single) entropic input string into a shorter
uniformly random string. Optimal constructions of strong extractors have been known for decades
and have innumerable applications. However, many of these applications only require a much
weaker primitive known as somewhere extractors, which have gone largely unstudied.

We show a surprisingly simple construction of a somewhere extractor that is twice as efficient
(in seed length) as the best possible strong extractor. This yields immediate improvements for
many applications. We also prove lower bounds showing that our construction is nearly optimal.

Post-Snowden cryptography.  The revelations of Snowden and the discovery of many high-
profile security-breaking bugs in cryptographic constructions have led cryptographers [BPR14,
DGG™15] to a rather paradoxical questions: “Can we provide meaningful security guarantees even
if the users’ machine is not behaving properly, either due to bugs or deliberate tampering?” With
Mironov, we introduced the concept of a cryptographic reverse firewall, which allowed us to build
powerful cryptographic constructions that remain secure even if the adversary has tampered with
the user’s machine [MS15]. With Dodis and Mironov, we then studied the fundamental problem of
secure and efficient message transmission in this model [DMS16]. Since, others have used reverse
firewalls to construct many “post-Snowden” cryptographic schemes [AMV15, CMY 116, MZY *18].

3 Directions for future work

In the future, I of course plan to continue studying real-world cryptography from a theorist’s
perspective. In particular, my colleagues’ and my work on post-quantum cryptography has some
added urgency at the moment, as we hope to identify any weaknesses in proposed schemes before
they are widely deployed. We can also provide more evidence for the security of some schemes (as
in much of the work described above), to provide better guidance to NIST and others.

I will also continue to study the geometry of lattices (which Wigderson recently declared to
be “among the most ‘universal’ objects in mathematics” [Wigl8]), cryptography more broadly,
complexity theory, randomness and pseudorandomness, high-dimensional geometry, etc. Below, I
describe a few of the specific open problems and directions that interest me.



Towards provable security. The holy grail for me would be a proof of the quantitative security
of some specific public-key cryptographic scheme, i.e., a theorem of the form “no algorithm running
in time 2'?® can break this specific scheme.” Such a statement would be a major theoretical
breakthrough and allow cryptographers (and internet users) to rest easy. But, there are many
major barriers to proving such a result, so that it seems very far out of reach at the moment (even
if we are willing to make strong complexity-theoretic assumptions).

Nevertheless, we can make progress towards this ambitious goal and provide strong evidence
for security. For example, the lower bounds in [BGS17, AS18a, ABGS19, SV19] rule out a large
class of attacks on certain (post-quantum) cryptographic schemes. With many of my colleagues,
we plan to continue in this direction. For lattice-based cryptography, we hope to prove lower
bounds on problems that are progressively “closer” to cryptography—specifically, lower bounds on
approximate SVP for progressively larger approximation factors. Another approach starts with the
fine-grained cryptography that we built in [BSV19] and tries to “boost” the security.

Ideal lattices. Many lattice-based cryptographic schemes rely on a special class of lattices related
to algebraic number fields, called ideal lattices [PR06, Mic07, LPR13]. (Ideal lattices were what
originally motivated Minkowski, Hermite, and others to study lattices in the mid 19th century.)
These schemes are remarkably efficient, and until recently, most experts believed that these more
efficient schemes were just as secure as “plain lattice” schemes. Ideal lattices are therefore almost
always used in practical applications. E.g., all but one of the NIST candidates use ideal lattices.

However, a recent series of unexpected algorithmic advances ([CGS14, CDPR16, CDW17,
PHS19, LPSW19] and [Stel9, MS19b]) has brought the security of these schemes into question.
These new algorithms do not yet yield attacks on any of the cryptographic schemes mentioned
above, and most people think that they will not. However, we naturally fear that they could be
our first glimpse of a huge security problem. My colleagues and I are working quickly to try to
either extend these algorithms to attacks or to discover what barriers, if any, prevent this. Indeed,
with Mukherjee, we recently showed some evidence for such barriers [MS19b].

Minkowski’s conjecture. Minkowski’s famous centuries-old conjecture in algebraic number the-
ory posits a tight bound on the “algebraic distance” between an element in an algebraic number
field and an ideal over its ring of integers. The conjecture has only been proven for low-degree fields
using computer-assisted case analysis [HRS09, HRS11, KR16] that cannot work for larger-degree
fields. In [RS17b] we found an entirely different way to attack Minkowski’s conjecture. We proved
(using a beautiful result of [SW16]) that the conjecture would follow from a positive resolution to
another famous question in convex geometry (specifically, a special case of the slicing conjecture).
With Dadush, Eldan, Regev, and Weiss, we are trying to use this approach to prove the conjecture.

Faster SVP algorithms. Currently, the fastest algorithms for SVP are still the 2"t°(™)_time
algorithms from [ADRS15, AS18b]. However, this seems not to be the end of the story. There
are heuristic algorithms that perform much better in practice [NV08, BDGL16], and there is
strong reason to believe that the algorithmic techniques in [ADRS15] can be improved substan-
tially [AS18b, ALS19]. Indeed, there is a natural candidate algorithm that runs in 2"/2+°(") time
whose correctness we have been unable to prove so far. Nevertheless, we believe that a proof is
possible. We are therefore working with Aggarwal, Li, and Regev, to find this proof, as well as to
find alternative algorithms.
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